Rumus Mencari Keliling Lingkaran
Contoh Soal Keliling Lingkaran Jika yang Diketahui Jari-jari
1. Diketahui sebuah lingkaran memiliki jari-jari 21 cm. Tentukan berapa keliling dari lingkaran tersebut!Pembahasan:Diketahui:r = 21 cmπ = 22/7
K = 2 x π x rK = 2 x 22/7 x 21 cmK = 44/7 X 21 cmK = 132 cm
Jadi, keliling dari lingkaran yang memiliki jari-jari 21 cm adalah 132 cm.
2. Hitunglah keliling dari lingkaran yang memiliki jari-jari 15 cm!Pembahasan:Diketahui:r = 15 cmπ = 3,14
K = 2 x π x rK = 2 x 3,14 x 15 cmK = 2 x 47,1 cmK = 94,2 cm
Jadi, keliling dari lingkaran dengan jari-jari 15 cm adalah 94,2 cm.
Apa yang Dimaksud dengan “Lingkaran”?
Secara singkat, lingkaran adalah salah satu bangun datar. Jenis bangun datar yang mirip bentuk ban sepeda ini memiliki berbagai rumus yang nggak terlepas dari bagian ilmu Matematika. Kita akan mengetahui serba-serbi rumus lingkaran yang akan kita ulas kali ini.
Namun sebelum itu, kenalan dulu yuk, dengan identitas dari lingkaran.
Lingkaran adalah himpunan semua titik di bidang yang berjarak sama dari suatu titik tetap. Titik tetap ini yang kemudian disebut sebagai pusat lingkaran. Sedangkan, jarak dari pusat ke setiap titik disebut dengan jari-jari.
Biar lebih tergambar, Skollamate bisa lanjut baca bagian di bawah ini untuk tahu detail tentang unsur-unsur lingkaran, ya!
TEMPO.CO, Jakarta - Lingkaran adalah salah satu bentuk bangun datar yang berjarak sama terhadap satu titik tertentu. Titik tertentu yang dimaksud berada tepat di tengah lingkaran yang disebut sebagai titik pusat lingkaran.
Penentuan luas dan keliling lingkaran umumnya muncul dalam mata pelajaran Matematika sejak duduk di bangku kelas empat sekolah dasar (SD). Lantas, bagaimana rumus keliling lingkaran?
Unsur-unsur Lingkaran
Yang termasuk dalam unsur-unsur lingkaran antara lain:
Titik pusat merupakan titik tengah pada diameter lingkaran.
Diameter merupakan ruas garis yang bisa menghubungkan dua titik berbeda pada lingkaran melalui pusat lingkaran.
Jari-jari merupakan jarak antara titik pusat dengan sisi lingkaran.
Busur lingkaran merupakan suatu garis lengkung dari keliling lingkaran.
Tali busur merupakan garis yang menghubungkan dua titik lingkaran, namun tidak melalui pusat lingkaran.
Juring merupakan permukaan lingkaran yang dibatasi dengan jari-jari.
Tembereng merupakan permukaan lingkaran yang dibatasi dengan busur dan tali busur.
Apotema adalah jarak di antara dua titik pusat lingkaran dan tali busur.
Contoh soal keliling lingkaran dengan diameter
Contoh soal keliling lingkaran dengan diameter
Danial sedang berenang di kolam berbentuk lingkaran. Sebelum mengitarinya, ia terlebih dahulu ingin mengetahui keliling lingkaran. Apabila diketahui diameternya sepanjang 20 meter, maka berapa kelilingnya?
Yang diketahui dari soal adalah diameter. Maka, menggunakan rumus Keliling Lingkaran = π x d. Kedua, karena panjang diameter bukanlah kelipatan tujuh, maka phi yang digunakan adalah 3,14. Adapun tahapan menghitungnya yakni:
Nah, panjang keliling kolam yang hendak diputari Danial adalah 62,8 meter.
Sudut Pusat dan Keliling Lingkaran
Sudut pusat adalah sudut yang dibentuk oleh dua buah jari-jari lingkaran. Ukuran sudut pusat sama dengan dua kali sudut keliling. Sedangkan sudut keliling adalah sudut yang terbentuk dari dua buah tali busur yang berpotongan pada keliling sebuah lingkaran.
Sudut keliling lingkaran dibedakan menjadi:
Itulah macam rumus keliling lingkaran yang dapat digunakan dalam materi matematika.
KOMPAS.com - Lingkaran adalah bangun datar yang terdiri dari himpunan titik-titik yang berjarak sama terhadap suatu titik tertentu di mana titik tertentu itu dinamakan titik pusat lingkaran.
Luas lingkaran adalah luasan daerah lingkaran.
Dilansir dari buku Genius Matematika Kelas 6 SD Sesuai Kurikulum (Edisi Revisi) (2007) oleh Joko Untoro, luas dan keliling lingkaran dapat dicari dengan menggunakan rumus:
Di mana:pi = 3,14 atau r = jari-jari lingkaran
Baca juga: Cara Mencari Banyaknya Lingkaran Pada Pola Ke-50
Jari-jari lingkaran adalah setengah dari diameter lingkaran.
Maka luas dan keliling lingkaran juga dapat menggunakan rumus:
Di mana:d = diameter lingkaran
Dikutip dari buku Metode Hafalan Di Luar Kepala Rumus Matematika SMP Kelas 7, 8, 9 (2015) oleh Andrian Duratun Kausar, agar lebih mudah dalam memahami rumus luas dan keliling lingkaran, berikut contoh soal dan pembahasan mengenai rumus lingkaran:
Baca juga: Cara Mengerjakan Soal Berapa Banyak Siswa yang Gemar Sepak Bola pada Diagram Lingkaran
Sebuah lingkaran memiliki diameter 28 cm. Tentukan keliling bangun tersebut!
K = π x d= x 28= 88 cm
Jadi, keliling lingkaran tersebut adalah 88 cm.
Baca juga: Cara Menghitung Luas 6 Seperempat Lingkaran dan Keliling Persegi ABCD
Tentukan keliling dan luas lingkaran dengan jari-jari 21 cm!
Diketahui lingkaran dengan r = 21 cm.
Keliling lingkaran = 2 π r = 2 x x 21= 2 x 22 x 3= 132 cm
Luas lingkaran = π x r²= x 21 x 21= 22 x 3 x 21= 1.386 cm²
Jadi, keliling lingkarannya adalah 132 cm, dan luas lingkarannya adalah 1.386 cm².
Baca juga: Cara Mencari Garis Singgung Lingkaran yang Sejajar dan Tegak Lurus dengan Garis
Sebuah lingkaran mempunyai jari-jari 7 cm. Hitunglah luasnya jika r = .
Luas lingkaran = π x r x r= x 7 x 7= 22 x 7= 154 cm²
Jadi, luas lingkaran adalah 154 cm².
Baca juga: Cara Mencari Jari-jari Lingkaran Luar Segitiga
Garis tengah lingkaran 28 cm. Hitung luas lingkaran tersebut!
Jari-jari = ½ diameter (garis tengah)r = ½ x 28= 14 cm
Luas lingkaran = π x r x r= x 14 x 14= 44 x 14
Jadi, luas lingkarannya 616 cm².
Itulah penjelasan mengenai rumus keliling dan luas lingkaran, beserta contoh soalnya.
Baca juga: Cara Menghitung Luas dan Keliling Lingkaran pada Soal Matematika
Bangun datar merupakan salah satu materi yang sering muncul pada mata pelajaran Matematika. Bangun datar terdiri dari persegi, persegi panjang, segitiga, lingkaran, dan lain sebagainya. Setiap bangun datar yang ada, memiliki rumus luas dan keliling yang berbeda-beda. Lantas, apa ya rumus keliling lingkaran?
Sebelum membahas lebih jauh mengenai rumus keliling lingkaran, ada baiknya mengetahui apa itu lingkaran, lalu bagaimana unsur dan sifat-sifatnya. Berikut ini penjelasannya yang berhasil detikEdu rangkum.
Lingkaran bisa dipahami sebagai suatu garis lengkung, yang kedua ujung dan titiknya, terletak pada garis lengkung tersebut dengan jarak yang sama terhadap suatu titik tertentu. Lingkaran bisa diartikan sebagai sekumpulan titik-titik yang tidak terhingga, mempunyai jarak yang sama pada titik tertentu.
SCROLL TO CONTINUE WITH CONTENT
Dikutip melalui buku berjudul Geometri dan Pengukuran Berbasis Pendekatan Saintifik karya Toybah, dkk (2020), Lingkaran adalah himpunan dari titik-titik yang memiliki jarak sama terhadap suatu titik tertentu. Jarak tersebut disebut dengan jari-jari lingkaran.
Sedangkan, titik pusat tertentu bisa disebut sebagai titik pusat lingkaran. Berikut ini unsur-unsur dan sifat-sifat pada lingkaran.
Contoh soal keliling lingkaran
Cara menghitung keliling lingkaran pun cukup sederhana. Kamu hanya perlu memasukkan angka-angka yang tersedia ke dalam rumus. Lalu, lakukan perkalian atau pembagian sesuai dengan posisinya masing-masing.
Biar gak bingung, langsung coba contoh soal keliling lingkaran di bawah ini, yuk!
Contoh soal keliling lingkaran dengan phi 22/7
Contoh soal keliling lingkaran dengan phi 22/7
Ada sebuah koin raksasa memiliki panjang jari-jari mencapai 70 cm. Kira-kira, berapa panjang keliling koin tersebut?
Karena yang diketahui jari-jari kelipatan tujuh, penghitungan keliling dilakukan menggunakan rumus Keliling Lingkaran = π x 2r dan phi 22/7, maka:
Maka, keliling koin raksasa tersebut adalah 440 cm.
Gimana, rumus keliling lingkaran dan cara menghitung keliling lingkaran cukup mudah, bukan? Yuk, perbanyak latihan dari contoh soal keliling lingkaran diatas agar makin mudah memahami materinya, ya!
Baca Juga: Sin Cos Tan dalam Trigonometri: Rumus, Tabel, dan Contoh Soal
Lingkaran adalah garis melengkung yang kedua ujungnya bertemu pada jarak yang sama dari titik pusat. Kedudukan titik-titik pada bidang datar berjarak sama dengan sebuah titik tertentu pada bidang tersebut. Titik tertentu itu disebut sebagai titik pusat lingkaran.
Lingkaran adalah bentuk yang sangat simetris. Setiap garis yang melalui pusat membentuk garis simetri refleksi dan memiliki simetri putar di sekitar pusat untuk setiap sudut.
Menurut publikasi University of Cambridge dalam nrich.maths.org, lingkaran mengandung makna simbolis. Bentuk ini sering digunakan untuk melambangkan harmoni dan persatuan.
Misalnya, pada simbol Olimpiade, terdapat memiliki lima lingkaran berkaitan dengan warna berbeda. Ini mewakili lima benua utama dunia yang bersatu dalam semangat persaingan yang sehat.
Materi geometri dalam matematika membahas lebih lanjut tentang keliling lingkaran sebagai berikut.
Rumus Keliling Lingkaran
Sebuah lingkaran membentuk garis lengkung dengan panjang tertentu yang disebut keliling.
Rumus keliling lingkaran adalah K = 2πr atau K = πd. Lambang K adalah keliling lingkaran.
Hasil bagi keliling dengan diameter lingkaran akan diperoleh bilangan yang nilainya 3,14 atau dapat juga menggunakan pembagian 22/7 yang disebut pi (π). Sedangkan r adalah jari-jari lingkaran.
Selain keliling lingkaran penuh, terdapat rumus untuk menghitung keliling setengah, seperempat, dan tiga perempat lingkaran. Bersumber dari buku “Pasti Bisa Matematika untuk SD/MI Kelas VI” oleh Tim Tunas Karya Guru, berikut pembahasannya.
Gambar Lingkaran (Dok. Penerbit Duta)
Rumus keliling lingkaran dalam gambar tersebut adalah:
1. Sebuah lingkaran mempunyai diameter 28 cm maka keliling lingkaran tersebut adalah…
Maka, hasil keliling lingkaran adalah 88 cm.
2. Sebuah lingkaran memiliki jari-jari 20 cm, berapa keliling lingkaran tersebut?
Jadi, keliling lingkaran tersebut adalah 125,6 cm.
Lingkaran memiliki bentuk lengkung atau melingkar pada seluruh sisinya. Rumus luas lingkaran adalah L = πr2.
Adapun untuk menghitung luas setengah, seperempat, dan tiga per empat menggunakan:
Contoh Soal Perhitungan Keliling Lingkaran
Melansir smpn3payakumbuh.sch.id, berikut contoh soal dan pembahasan keliling lingkaran:
Hitunglah keliling lingkaran yang mempunyai diameter 15 cm dengan π = 3,14.
Keliling = πd = 3,14 x 15 cm = 47,1 cm.
Hitunglah diameter lingkaran yang mempunyai keliling 25,12 cm dan π = 3,14.
Jadi, diameter lingkaran tersebut adalah 8 cm.
Tentukan keliling lingkaran yang berdiameter 21 cm dan π = 22/7.
Keliling = πd = 22/7 x 21 cm = 22 x 3 cm = 66 cm.
Tentukan keliling lingkaran yang berdiameter 35 cm dan π = 22/7.
Keliling = πd = 22/7 x 35 cm = 22 x 5 cm = 110 cm.
Tentukan keliling lingkaran yang berdiameter 49 cm dan π = 22/7.
Keliling = πd = 22/7 x 49 cm = 22 x 7 cm = 154 cm.
Tentukan keliling lingkaran yang berdiameter 38,5 cm dan π = 22/7/
Keliling = πd = 22/7 x 38,5 cm = 22 x 5,5 cm = 121 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 10 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 10 cm = 62,8 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 15 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 15 cm = 94,2 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 36 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 36 cm = 226,08 cm.
Tentukan keliling lingkaran yang panjang jari-jarinya 15,5 cm dan π = 3,14.
Keliling = 2πr = 2 x 3,14 x 15,5 cm = 97,34 cm.
Diameter mata uang koin lima ratus rupiah adalah 15 mm. Hitunglah kelilingnya.
Keliling = 2πr = 2 x 3,14 x 15 mm = 94,2 mm.
Diameter sebuah roda mobil adalah 42 cm. Hitunglah keliling roda tersebut.
Keliling = πd = 22/7 x 42 cm = 22 x 6 cm = 132 cm.
Skollamate, ketika pertama kali mendengar lingkaran, apa yang ada di pikiranmu? Hmm… Ban sepeda, kancing, jam dinding, atau pizza? Betul! Pasti kamu bisa menyebutkan banyak benda berbentuk lingkaran.
Tahukah kamu kalau benda yang kamu sebutkan tadi adalah gerbang dari sebuah konsep ilmu Matematika?
Ya! Tanpa kamu sadari, dulu kamu mengenal lingkaran hanya sebagai jenis “bentuk”. Tapi sekarang, kamu akan mengenal lingkaran lebih jauh lagi sebagai salah satu dari konsep Matematika, yaitu “bangun datar”. Menarik, kan?
Nggak sebatas bentuknya melingkar, kamu akan lebih tau serba-serbi tentang lingkaran. Kamu juga bakal ketemu rumus lingkaran yang nggak cuma ada satu. Penasaran mau pelajarin lebih lanjut? Yuk, baca di artikel ini!